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Monday, April 20 
 
I would like to apologize, because in the list of theorems that I sent you, there was a typo. In the 
hypotheses for two of the theorems, there were written nonstrict inequalities, but they should have been 
strict inequalities. I have corrected this in the new version. 
 
If you have felt particularly challenged by these proofs, that’s okay! I hope that this is an opportunity for 
you not to memorize a method and execute it perfectly, but rather to be challenged and to struggle with 
real mathematical problems. I highly encourage you to come to office hours (virtually) to ask questions 
about these problems. And feel free to email me as well! 
 
This week’s handout is a rewriting of those same theorems, along with one more, the Extreme Value 
Theorem. I apologize for all the changes, but I - along with the rest of you - am still adjusting to this new 
setup. My plan had been for us to study the relationship between graphs and their derivatives, for these 
theorems to arise naturally from our study, and then for us to prove these theorems rigorously - needless 
to say, we haven’t had the liberty to pursue such mathematical play together, so our interactions with 
these theorems, for most of us, have probably felt more like getting hit by a bus. 
 
That’s okay. 
 
In this week’s handout, I have proven the Extreme Value Theorem and Fermat’s Theorem (which you 
looked at last week), and your assignment for this week is to check your work against mine, work to 
understand the proofs as they are written, and then prove for yourself both Rolle’s Theorem and 
the Mean Value Theorem. Leave the corollaries for later. 
 

1. Today, you should revise your proof of Fermat’s Theorem, using the proof I have provided as a 
guide. Feel free to write in your own language. I don’t intend for you to copy my proof word for 
word. In fact, mine is probably clunky at times and could be rewritten to be more elegant. 

 
Tuesday, April 21 
 

1. Read carefully through the statement and proof of the Extreme Value Theorem. 
2. Complete Exercise 1. 

 
 
Wednesday, April 22 
 

1. Read carefully through the statement and proof of Fermat’s Theorem. 
2. Complete Exercise 2. 
3. Read carefully through the theorem statements for Rolle’s Theorem and the Mean Value Theorem. 
4. Complete Exercises 3 and 5. 

 



 

 
Thursday, April 23 
 

1. Complete Problem 4 of the handout. 
 
 
 
Friday, April 24 
 

1. Complete Problem 5 of the handout. 



Important Derivative Theorems

Calculus I

Mr. Simmons

Theorem (Extreme Value Theorem). If a real-valued function f is continuous on the closed

interval [a, b], then f must attain a maximum and a minimum somewhere in [a, b], each at least

once.

Exercise 1. Draw a clear diagram that represents the Extreme Value Theorem. You may even
draw more than one diagram to illustrate the universality of the theorem.

Proof. Let f be a real-valued function that is continuous on the closed interval [a, b]. The theorem
says that f must attain a maximum and a minimum. We will prove that it must attain a maximum,
and the proof that it must attain a minimum is trivially similar.

For f (x) to have a maximum value means that the function value gets that high and doesn't
get any higher. There will be two parts to this proof. First we will show that there is a value that
f (x) doesn't get higher than. Then we will prove that it does get that high.

Part I. First we show that there must be a �nite upper bound (a value that f (x) doesn't get
higher than). We will accomplish this by assuming that there is no such value, and then deriving
a contradiction.

Suppose for contradiction that there is no �nite upper bound on f (x). This means that the
function attains larger and larger values. There must be some point x1 with f (x1) > 1, and a point
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x2 with f (x2) > 2, and a point x3 with f (x3) > 3, and in general for any positive integer n, a
point xn in [a, b] such that f (xn) > n.

Now look at this sequence (list) of points we just created:

x1, x2, x3, . . . , xn, . . . .

It's not clear that
lim
n→∞

xn

exists, but we shall pick out certain xn's from the list to form a subsequence (sub-list)

xn1 , xn2 , xn3 , . . . , xnk
, . . . ,

such that
lim
k→∞

xnk

exists.1 This will be useful at the end of the proof.
We �nd the subsequence by �rst splitting the interval [a, b] in half down the middle and consid-

ering its two halves. There are in�nitely many xn's in [a, b], so there must be in�nitely many xn's
in either the left half or the right half (maybe both). Pick one for which that's the case, and call it
[a1, b1]. Since there are in�nitely many of the xn's in [a1, b1], we can pick one with n ≥ 1 and call
it xn1 .

There are in�nitely many xn's in [a1, b1], so there must be in�nitely many xn's in either its left
or right half. Pick a half for which that's the case, and call it [a2, b2]. Select one of the in�nitely
many xn's in [a2, b2] that has n ≥ 2 and call it xn2

.
We continue in this way and end up with the sequence

xn1
, xn2

, xn3
, . . . , xnk

(nk ≥ k) .

The intervals from which we chose the xnk
's were all in [a, b], and their width approaches zero as k

tends toward in�nity,2 so we conclude that

lim
k→∞

xnk

exists and is in [a, b]. Let's name this limit x. (I.e., let x = lim
k→∞

xnk
.)

We now observe that

f (x) = f

(
lim
k→∞

xnk

)
= lim

k→∞
f (xnk

) = lim
n→∞

f (xn) .

We can pass the limit outside of the function since we are given that the function is continuous.
The last equality we can conclude since every xnk

was chosen as one of the xn's in the �rst place,
and nk ≥ k.3

1 To illustrate and perhaps clarify, if our sequence of xn's was
1
2
, 1
2
, 1
4
, 3
4
, 1
8
, 7
8
, 1
16
, 15
16
, 1
32
, 31
32
, . . . , for example, our

subsequence of xnk 's might be every other element from that list�namely the sequence 1
2
, 1
4
, 1
8
, 1
16
, 1
32
, . . .�because

while our xn's here wouldn't have a limit, our xnk 's would.
2 If the width of [a, b] is δ, then the width of [a1, b1] is

δ
2
, the width of [a2, b2] is

δ
4
, the width of [a3, b3] is

δ
8
, and

in general the width of [ak, bk] is
δ
2k

, which approaches zero as k tends toward in�nity.
3 If you are not sati�ed with this justi�cation, see if you can use the de�nition of a limit at in�nity to work out a

more rigorous justi�cation.
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Since we chose the xn's originally such that the values f (xn) increased to in�nity an n increased,
we see that this limit cannot be �nite. But then the above equality would then suggest that f (x)
does not exist. This contradicts the assumption that f is de�ned on the entire closed interval.

Having derived a contradiction, we see that our original assumption must have been false, so in
fact there must be a �nite upper bound.

Part II. We have now shown that there must be a �nite upper bound. Let M be the smallest
such upper bound.4 It remains to be shown that there exists some point such that the value of the
function there is M .

Since M is the least upper bound, this means that the function attains values closer and closer
to M . That is, for some positive ε, there must be some point x1 such that f (x1) is within ε of M ,
and a point x2 such that f (x2) is within

ε
2 of M , and a point x3 such that f (x3) is within

ε
3 of M ,

and in general for any positive integer n, a point xn such that f (xn) is within
ε
n of M .5

Now look at this sequence of points

x1, x2, x3, . . . , xn, . . . .

It is not clear that
lim
n→∞

xn

exists, but we shall �nd a subsequence

xn1
, xn2

, xn3
, . . . , xnk

, . . .

such that
lim
k→∞

xnk

exists.
To �nd this subsequence, split [a, b] into two halves as before. Select a half that has in�nitely

many xn's in it, choose an xn from among them where n ≥ 1, and call it xn1
. As before, this

continued process yields the subsequence

xn1
, xn2

, xn3
, . . . , xnk

, . . . (nk ≥ k) .

The intervals from which we chose the xnk
's were all in [a, b], and they approach a width of zero

as n tends toward in�nity, so we conclude that

lim
k→∞

xnk

exists and is in [a, b]. Let's name this limit x.

4 The reason we can do this depends on one of the de�ning properties of the real numbers. This property says

there are no �holes� in the real numbers and is called the completeness property. To illustrate the need for this

property, consider the function f (x) = x2 − 2. Since f (0) = −2 and f (2) = 2, the Intermediate Value Theorem

implies that there is some real number x between zero and 2 such that f (x) = 0. And there is, namely
√
2. But if we

were working with rational instead of real numbers, this value would not exist because
√
2 is not a rational number,

so the IVT would be false. Whether or not this makes sense, the point should be clear: the theorems of calculus rest

on the theory of the real numbers. This theory is a rich and powerful theory, but it is more appropriately discussed

in detail in an introductory real analysis class than a high school calculus class.
5 Notice that these xn's are not the same as those in Part I. I use the same variable to emphasize the similarity

in the ideas we are using in the two parts.
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We now observe, similarly to before, that

f (x) = f

(
lim
k→∞

xnk

)
= lim

k→∞
f (xnk

) = lim
n→∞

f (xn) ,

with the same justi�cations as before.
Since we chose the xn's originally such that the values f (xn) were approaching M , we know

that
lim
n→∞

f (xn) =M.

The above equality then suggests that
f (x) =M.

This shows what we were trying to prove, that the funtion f attains its maximum value at the
point x in the interval [a, b].

This concludes the proof.

Theorem (Fermat's Theorem). If a local extremum occurs at an interior point, x = c, and

f ′ (c) exists, then

f ′ (c) = 0.

Exercise 2. Draw a clear diagram that represents Fermat's Theorem. You may even draw more
than one diagram to illustrate the universality of the theorem.

Proof. Let f be a function with a local extremum at an interior point c of its domain, and suppose
f ′ (c) exists. Since a local maximum of f will be a local minimum of −f , we can suppose without
loss of generality that f (c) is a local maximum.
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Proof that the derivative is nonpositive. Suppose for contradiction that f ′ (c) > 0. Let ε = f ′ (c),
so that by the de�nition of a derivative there exists δ > 0 such that for all x,

0 < |x− c| < δ =⇒
∣∣∣∣f (x)− f (c)x− c

− f ′ (c)
∣∣∣∣ < f ′ (c) . (1)

By the de�nition of a local maximum, there exists an open interval (a, b) containing c such that
f (x) < f (c) for all x ∈ (a, b).

Pick x such that c < x < min {b, c+ δ}.
Since x ∈ (a, b), by the de�nition of a local maximum, therefore f (x) ≤ f (c).
Since 0 < |x− c| < δ, by (1), we know∣∣∣∣f (x)− f (c)x− c

− f ′ (c)
∣∣∣∣ < f ′ (c) . (2)

Case 1. Suppose the expression in the absolute value bars in (2) is nonnegative. This means that

f (x)− f (c)
x− c

− f ′ (c) ≥ 0

f (x)− f (c)
x− c

≥ f ′ (c)

f (x)− f (c) ≥ f ′ (c) (x− c)
f (x) ≥ f (c) + f ′ (c) (x− c)
f (x) > f (c) ,

since f ′ (c) and (x− c) are both strictly positive.

Case 2. Suppose the expression in the absolute value bars in (2) is negative. Then (2) becomes

−
(
f (x)− f (c)

x− c
− f ′ (c)

)
< f ′ (c)

f (x)− f (c)
x− c

− f ′ (c) > −f ′ (c)

f (x)− f (c)
x− c

> 0

f (x)− f (c) > 0

f (x) > f (c) .

Both cases yield f (x) > f (c), a contradiction, since f (x) ≤ f (c). So f ′ (c) ≯ 0.

Proof that the derivative is nonnegative. Suppose for contradiction that f ′ (c) < 0. Let ε =
−f ′ (c), so that by the de�nition of a derivative there exists δ > 0 such that for all x,

0 < |x− c| < δ =⇒
∣∣∣∣f (x)− f (c)x− c

− f ′ (c)
∣∣∣∣ < −f ′ (c) . (3)

By the de�nition of a local maximum, there exists an open interval (a, b) containing c such that
f (x) < f (c) for all x ∈ (a, b).
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Pick x such that max {a, c− δ} < x < c.
Since x ∈ (a, b), by the de�nition of a local maximum, therefore f (x) ≤ f (c).
Since 0 < |x− c| < δ, by (3) we know∣∣∣∣f (x)− f (c)x− c

− f ′ (c)
∣∣∣∣ < −f ′ (c) . (4)

Case 1. Suppose the expression in the absolute value bars in (4) is nonnegative. Then (4) becomes

f (x)− f (c)
x− c

− f ′ (c) < −f ′ (c)

f (x)− f (c)
x− c

< 0

f (x)− f (c) > 0

f (x) > f (c) ,

since x− c is negative.

Case 2. Suppose the expression in the absolute value bars in (4) is negative. This means that

f (x)− f (c)
x− c

− f ′ (c) < 0

f (x)− f (c)
x− c

< f ′ (c)

f (x)− f (c) > f ′ (c) (x− c)
f (x) > f (c) + f ′ (c) (x− c)
f (x) > f (c) ,

since f ′ (c) (x− c), being the product of two strictly negative values, is itself strictly
positive.

In both cases, we have f (x) > f (c), a contradiction, since f (x) ≤ f (c). So f ′ (c) ≮ 0.

Conclusion. We have shown that f ′ (c) ≯ 0 and that f ′ (c) ≮ 0. Therefore, by the trichotomy
property of the real numbers, we conclude that f ′ (c) = 0.

Theorem (Rolle's Theorem). If a real-valued function f is continuous on a closed interval

[a, b], di�erentiable on the open interval (a, b), and f (a) = f (b), then there exists at least one c in
the open interval (a, b) such that

f ′ (c) = 0.

Exercise 3. Draw a clear diagram that represents Rolle's Theorem. You may even draw more
than one diagram to illustrate the universality of the theorem.
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Problem 4. Rolle's Theorem is a direct consequence of the Extreme Value Theorem and Fermat's
Theorem. Prove Rolle's Theorem.
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Theorem (Mean Value Theorem). Let f : [a, b] → R be a continuous function on the closed

interval [a, b] and di�erentiable on the open interval (a, b). Then there exists some c in (a, b) such

that

f ′ (c) =
f (b)− f (a)

b− a
.

Exercise 5. Draw a clear diagram that represents the Mean Value Theorem. You may even draw
more than one diagram to illustrate the universality of the theorem.

Problem 6. The Mean Value Theorem is the generalized case of Rolle's Theorem. Using Rolle's
Theorem, prove the Mean Value Theorem.
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Corollary. If f ′ (x) = 0 for all x in an open interval I, then

f (x) = C

for all x in I, where C is a constant.

Corollary. If f ′ (x) = g′ (x) at each point of an open interval I, then

f (x) = g (x) + C

for all x in I, where C is a constant.

Corollary. Suppose that f is continuous at each point of [a, b] and di�erentiable at each point of

(a, b).

1. If f ′ (x) > 0 at each point of (a, b), then f (x) is increasing on [a, b].

2. If f ′ (x) < 0 at each point of (a, b), then f (x) is decreasing on [a, b].

3. If f ′′ (x) > 0 at each point of (a, b), then f (x) is concave up on [a, b].

4. If f ′′ (x) < 0 at each point of (a, b), then f (x) is concave down on [a, b].

Theorem. If f ′ (c) = 0 and f ′′ (c) > 0, then f (x) has a local maximum at x = c.

Theorem. If f ′ (c) = 0 and f ′′ (c) < 0, then f (x) has a local minimum at x = c.


