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Weekly Plan​: 
 
Monday, May 4 
⬜ Read “The Big Picture” 
⬜ Read “Review Overview” 
⬜ Week 6: Practice Problems 
 
Tuesday, May 5 
⬜ Week 6: Conceptual Questions 1 and 2 
 
Wednesday, May 6 
⬜ Week 6: Conceptual Questions 3 and 4 
 
Thursday, May 7 
⬜ Week 6: Conceptual Questions 5 and 6 
 
Friday, May 8 
⬜ Attend office hours 
⬜ Catch up or review the week’s work 
 
 
  

 



 

Monday, May 4 
 
Dearest students of Calculus, 
 
Thank you all for persevering during this unfortunate time. I’m sad that I can’t be there with you to help 
us all understand better the mathematical truths we’ve been looking at. 
 
This week begins our review of the whole year. We will be stepping back to get a big-picture look at 
things, and going back to solidify our knowledge of what we’ve learned. For today, please complete the 
following tasks: 

1. Read “The Big Picture.” 
2. Read “Calculus I Review Overview.” 
3. Complete the practice problems for Week 6. (If you want to save completing these practice 

problems until after answering the conceptual problems, that’s fine too.) 
 
 
Tuesday, May 5 
 

1. Answer, in full, complete, grammatical sentences, the first and second conceptual questions for 
Week 6. I will not be surprised if this takes you the whole of today’s 40 minutes. As it says in the 
instructions, you are writing as if you are teaching these concepts to someone who’s never heard 
of them before. (If you wish, you may answer these two questions together, not in two separate 
answers.) 

 
 
 
Wednesday, May 6 
 

1. Answer, in full, complete, grammatical sentences, the third and fourth conceptual questions for 
Week 6. I will not be surprised if this takes you the whole of today’s 40 minutes. As it says in the 
instructions, you are writing as if you are teaching these concepts to someone who’s never heard 
of them before. (If you wish, you may answer these two questions together, not in two separate 
answers.) 

 
 
Thursday, May 7 
 

1. Answer, in full, complete, grammatical sentences, the fifth and sixth conceptual questions for 
Week 6. I will not be surprised if this takes you the whole of today’s 40 minutes. As it says in the 
instructions, you are writing as if you are teaching these concepts to someone who’s never heard 
of them before. (If you wish, you may answer these two questions together, not in two separate 
answers.) 



The Big Picture

Mr. Simmons

11 Calculus I

We have come to a point in our course where it is natural to turn our gaze backward and survey
all that we've done. We're wrapping up our studies of derivatives, and next year you will begin
with the study of integrals. Derivatives answer the �rst great question of Calculus: what is the
slope of a tangent line? Integrals will answer the second: what is the area under a curve? The two
are intimately related, but we will wait until next year to see how.

What we want to do now is threefold:

1. Solidify our understanding of the purpose and scope of Calculus.

2. Review the concepts of Calculus.

3. Practice the skills of Calculus.

This piece of writing is intended to achieve the �rst of these ends.
Let's step back and look at the big picture for a second. Calculus is the mathematical study of

continuous change. What does that mean? Often, it means it's the mathematical study of physical
change. The x-axis often represents time and the y-axis position. A curve, then, represents the
motion of an object, and we can analyze that motion using derivatives. A derivative here represents
instantaneous change. Under this interpretation, we can rephrase Fermat's theorem1 to say that
when you toss a ball up in the air, at its highest point, it is stationary for an instant, and knowing
this is incredibly helpful in pinpointing exactly when it will reach that point. A bit of imagination
let's us see how this theorem could be helpful to NASA for planning a rocket launch, for example.
The theorems of Calculus are incredibly useful in physics, medicine, engineering, and many other
�elds.

But Calculus is the mathematical study of continuous change. We don't study it solely because
it is useful in the sciences. You're not all going to be scientists. This is a math class, and we're
learning to do math. That means we're learning to abstract ideas, form conjectures, and then prove
those conjectures into theorems. What does all that mean?

To start with, I just used �abstract� as a verb. What does that mean? When you were young,
you looked at a bunch of di�erent apples, and you abstracted from your experience of all those
di�erent apples the general idea of apple. Then you started counting: one apple, two apples, three
apples. Eventually you abstracted from all your counting the general ideas one, two, three, etc. Not
�one apple,� but just, one. Not �two apples,� but just, two. We called these numbers. Then we
started asking question about numbers, like �What's 5 + 2?� or �What's 3928÷ 42?� When we got
bored answering simple questions like that, we started asking �What number would I multiply 36

1 which, remember, says that if f is de�ned on (a, b) and has a local maximum (or minimum) at x, and f is
di�erentiable at x, then f ′ (x) = 0
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by to get 2059?� We got tired of writing out long sentences like that, so we shortened it to �Say
36x = 2059. What's x?� or even �Solve 36x = 2059 for x.�

(By the way, I didn't give you a de�nition of the verb �abstract.� You're abstracting one from
these sentences.)

Then you abstracted from the question, �What are 8× 2 + 10, 8× 3 + 10, and 8× 4 + 10?,� the
general idea �y = 8x+ 10.� We called that a function. We noticed things were getting pretty darn
abstract, so we came up with a whole new way to represent these ideas. Not just letters in place of
numbers, but pictures in place of sentences. Graphs. It made it way easier to interpret functions.

Then you looked at a bunch of similar functions, like y = 2x+ 4, y = 5x− 3, and y = 39x+ 9,
and you abstracted from them the general function equation

y = mx+ b.

We called this a form. (Speci�cally, that one's called �slope�intercept form.�) We abstracted some
other forms too, like

y − y1 = m (x− x1) ,

y = ax2 + bx+ c,

y =
apx

p + ap−1x
p−1 + · · ·+ a2x

2 + a1x+ a0
bqxq + bq−1xq−1 + · · · b2x2 + b1x+ b0

,

y = abx,

y = sin (x) ,

and others. And we learned how to graph them all.
Now, in Calculus, we've come to a whole new level of abstraction. We've started saying inter-

esting things about these functions. We started saying things like �A function whose graph is a
smooth curve from here to here will have a highest and lowest point within that space.� Any smooth
function. We've gone from apples, to numbers, to variables, to functions, to classes of functions, to
types of classes of functions, to statements about types of classes of functions. At �rst we thought
the type we cared most about was the type called �continuous,� because we thought those curves
were always smooth, but then we discovered that some of them have ugly corners, like the absolute
value function. So we got interested in a nicer type called �di�erentiable.� Those functions were all
very smooth. They re�ected the real world, because things in the real world move around, speed
up and slow down, in a smooth way. The statements we've been making about functions�at �rst
functions in general, then continuous functions, then di�erentiable functions�are called theorems.

Theorems are at a very high level of abstraction. �If f is de�ned on (a, b) and has a local
maximum (or minimum) at x, and f is di�erentiable at x then f ′ (x) = 0.� What's f? Well, it's
any di�erentiable function. So is it rational? Exponential? Trigonometric? If it's rational, is it
linear? Quadratic? Cubic? Higher-order polynomial? Hyperbolic? If it's linear, is it y = 2x?
y = 31x + 5? y = − 5

6x + 2
3? If it's, say, y = 4x − 1, then what number is y? Well, it depends on

what number x is. What number is x? It could be any number in the domain of the function. So,
4? 19485? −0.009284? π? What do x and y even represent? What are they the numbers of? Time
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versus position? Time versus money? Frequency versus amount? Are they just abstract variables,
there simply to draw a beautiful graph?

There are so many layers of abstraction here. That's what makes Calculus so di�cult. You
might think theorems like this are too abstract to be useful. But they are darn useful. In fact, the
more general the type of function that a theorem applies to (i .e., the more general the �if� part of
the theorem), the more useful it is. And also the more speci�c the thing it says about that type of
function (i. e., the more speci�c the �then� part of the theorem), the more useful it is. This theorem
in particular helps us optimize a function, meaning �nd its maximum. That can be useful if you
ever want to get the highest possible amount of something, which people often do (e. g., of money).2

So that's what a theorem is, a general, and therefore abstract, statement in math. What do
I mean by saying that a math class teaches you to abstract ideas, form conjectures, and prove
those conjectures into theorems? Well, forming conjectures is just the last step of abstraction as
described above. A mathematician might notice a pattern: �All the di�erentiable functions I've ever
seen have had f ′ (x) = 0 at their maxima. I wonder if that's true for all di�erentiable functions.�
That's a conjecture. That one in particular was proven by Pierre Fermat, causing it to be called
a theorem (which just means a conjecture that's been proved). But there are still conjectures out
there, yet to be proven. For example, the twin prime conjecture.3 And there are an in�nite number
of conjectures yet to be made, maybe even an in�nite number of interesting ones.

Once we've made a conjecture, a guess, we have to try to prove it. If it is proved, we call it a
theorem. If it is disproved, we call it trash. (I'm kidding.) While we might use physical observations
and intuitions to come up with conjectures, we can't depend on them to prove theorems. We prove
theorems with deductive logic. Deductive logic doesn't rely on intuition, but on rigorous rules of
inference.

For example, an intuitive understanding of a limit says that it's what the output approaches as
the input approaches some value. If the input is interpreted as time and the output is interpreted
as the position of an object, we would say that the limit is the place the object is going toward.
In Calculus, it's essential to have this intuitive understanding, in order to be able to make guesses
about which statements about limits might be true, and which ones might be false. But in math,
if we're actually going to prove one of our guesses, we need a rigorous de�nition of a limit. �Going
toward� isn't a rigorous mathematical concept. The formal, rigorous de�nition of a limit that we
learned is that �The function f approaches the limit l near a means: for every ε > 0 there is some
δ > 0 such that, for all x, if 0 < |x− a| < δ, then |f (x)− l| < ε.� This is rigorous, because it relies
not on any intuitions, but on terms that themselves have rigorous de�nitions, like �absolute value.�

This is why math is so hard. It's so abstract. Just look at all those symbols. But that abstraction
frees us from relying on physical intuitions, and it let's us prove things rigorously. That might seem
silly, since we can just say, �But the informal de�nition worked.� But rigor is what has allowed

2 If you want to see a bunch of practical applications of calculus, look at page vi of your textbook. Finney loves
practical applications.

3 If you're interested, �twin primes� are any two primes that are only 2 apart. The �rst few twin prime pairs are
3 and 5, 5 and 7, 11 and 13, 17 and 19, 27 and 29, 29 and 31, 41 and 43. . . . You can already start to see they're
getting rarer as we get higher. So do they eventually end? Is there a last twin prime pair? The twin prime conjecture
states than there's no highest twin prime pair, that they just keep going, that no matter how high a number you
pick, you'll be able to �nd a twin prime pair that's higher. �Beginning in 2007, two distributed computing projects,
Twin Prime Search and PrimeGrid, have produced several record-largest twin primes. As of September 2018, the
current largest twin prime pair known is 2996863034895 ·21290000±1, with 388, 342 decimal digits. It was discovered
in September 2016. There are 808, 675, 888, 577, 436 twin prime pairs below 1018� (Wikipedia). But it's not enough
just to show that they seem to keep going. Mathematicians want to prove they keep going. This conjecture has not
been proven.
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Calculus to advance far beyond what would have been possible otherwise. We need both intuition
and rigor.

I want to make sure we're not missing the forest for the trees. Perhaps the theorems of Calculus
seem to have been presented as abstract collections of symbols, with no real meaning. But of course,
from what I've said above, that's not what they are. They do have meaning.

Rolle's theorem doesn't just say �If f is continuous on [a, b] and di�erentiable on (a, b), and
f (a) = f (b), then there is a number x in (a, b) such that f ′ (x) = 0�; it implies that if an object
is in the same place now as it was a few minutes ago, then at some point between then and now it
had to be stationary, even if only for an instant.

The Mean Value Theorem implies that if I'm here at one time and sixty miles away an hour
later, then at some point, even if only for a moment, I had to be going 60mph.

The theorems have meaning. The physical interpretations help us understand that meaning.
They don't de�ne it: the theorems are abstract mathematical truths. The variables x and y don't
have to be time and position. That is often how the theorems are applied, and it can be useful
to think of them that way, to see them as �tting into a larger picture. But always remember: in
mathematics, we are studying eternal truths. The functions we're studying are abstract relations
between quantities, independent from how those quantities are interpreted. The fact that they
are true relations makes them incredibly useful in the sciences, but that's not primarily why we're
studying them.

I hope this brief big-picture look at Calculus helps at least a little in conceptualizing and
contextualizing the theorems of Calculus, as well as contextualizing Calculus among your other
studies. As we come to the end of this academic year and look back on what we learned, we're
not just going to review skills�how to apply the Chain Rule, for instance�but also make sure we
have a �rm understanding of each theorem and technique of Calculus as it relates to Calculus as a
whole, the study of continuous change.



Calculus I Review Overview

Mr. Simmons

Calculus I

The Road Ahead

In these next three weeks (the three �rst full weeks of May), we're going to be reviewing Calculus i.
(So that the numbers align with the week numbers for packets, we're going to start with �Week 6.�)
We will have an open-book assessment in Week 9 (the last week of the year).

This year, we've studied di�erential calculus (as opposed to integral calculus). Di�erential
calculus answers the question of the slope of a tangent line; integral calculus answers the question
of the area under a curve. The two will be connected in Calculus ii, but for now let's take some
time to make sure we understand the �rst of these.

The main idea of this year of Calculus has been to understand derivatives of functions. Deriva-
tives are how we analyze continuous change. We learned years ago how to calculate the slope of
a line. A line has a constant slope; a linear function has a constant rate of change. Whenever
the independent variable changes by some amount, the dependent variable changes by a constant
multiple of that amount.

But what about curves? Ever since ancient Greece, where π was discovered, curves have been
giving us trouble. That's where derivatives come in. If we look at a curve, we notice that we can
draw a tangent line. Then we can measure the slope of that tangent line. Great! That tells us the
rate of change of the curve right at the point where the tangent line touches it.

That's all that di�erential calculus is. It's just looking at curves and asking how sloped they are,
how fast they change, and how fast that change is changing (and how fast that change is changing,
and so on). But answering that question turned out not to be quite as easy as we might have
guessed.

We ended up needing to base our de�nition of derivatives on a de�nition of limits. The derivative
is the slope of the tangent line, but what's a tangent line? The best way we found to de�ne the
tangent line at a certain point (call it the tangent point) was for it to be the limit of secant lines
(lines that go through the curve at two di�erent points) as those two points get closer to the tangent
point. So we de�ned the derivative at a point to be the limit of the secant line's slope as the secant
line approaches the tangent line at that point. And there you have it: the slope of a curve, the
instantaneous rate of change of a curvy function.

These are the main ideas behind di�erential calculus. In the next three weeks, we'll review the
major concepts that help us understand these main ideas, and we'll practice again some of the skills
we learned. Each week, I will give you two types of questions to answer: conceptual questions and
practice questions. As an aid to answering these questions, I encourage you to look at the relevant
chapter in your textbook.1 As always, if you have questions, let me know. Below is a rough outline

1 While Spivak's text is more rigorous and precise than Finney's, Finney can be more intuitive and easier to read

for the purposes of a general overview, and you have easy access to it already. If you would like access to the relevant

1
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of each week's main questions.

Week 6: Functions, Limits, and Continuity

When we say we want to analyze continuous change, we're talking about continuous change of
a function. So what's a function? We want to be able to de�ne a tangent line, and I've hinted
that we're going to use limits to do that. What's a limit? Finally, which kind of functions do we
most want to look at? The answer is di�erentiable functions, which are a subclass of continuous
functions . . . but what does �continuous� mean?

Week 7: Derivatives

After understanding functions, limits, and continuity, we can �nally give a little bit more form to
our de�nition of derivatives. We know that the derivative is the slope of a tangent line, but how do
we �nd that? Once we've found a derivative function, what can we do with it?

Week 8: Derivatives and Graphs

Knowing the derivative of a function can be useful for graphing it. Let's understand how, and let's
practice doing it.

excerpts from Spivak, please let me know by email.



Week 6: Functions, Limits, and Continuity

Mr. Simmons

Calculus I

Practice Problems

1. Given f (x) = 3− 5x− 2x2, evaluate

(a) f (4).

(b) f (0).

(c) f (−3).
(d) f (6− t).

(e) f (7− 4x).

(f) f (x+ h).

2. Evaluate f(x+h)−f(x)
h for

(a) f (x) = 4x− 9.

(b) f (x) = 2x
3−x .

3. Determine the domain of each function:

(a) f (x) = 3x2 − 2x+ 1

(b) f (x) = −x2 − 4x+ 7

(c) f (x) = 2 +
√
x2 + 1

(d) f (x) = 5− |x+ 8|

4. Find the following limits.

(a) lim
x→−5

x2−25
x2+2x−15

(b) lim
x→1

x2−1
x+1

(c) lim
x→2

x2−4
x−2

(d) lim
x→3

x2−4
x−2

(e) lim
h→0

(a+h)2−a2

h

1
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5. Let f (x) =

{
7− 4x if x < 1

x2 + 2 if x ≥ 1
. Find the following limits:

(a) lim
x→−6

f (x)

(b) lim
x→1

f (x)

6. In the function graph below, determine where the function is discontinuous.

Conceptual Questions

Answer the following questions in your own words. Try to avoid using symbols to the extent
possible. Instead, write in full, complete, grammatical sentences. Answer these questions as if
you're teaching these concepts to someone who's never heard of them before. That might mean
giving examples, counterexamples, or analogies, for example. If you use any notation, it means
explaining that notation. (This is the most important part of the review.)

1. In your own words, what is a function?

2. In your own words, what is a domain?

3. Exactly how are functions represented by equations?

4. Exactly how are functions represented by graphs?

5. In your own words, what is a limit?

6. In your own words, what is a continuity?


